Accions

Generalització

De Wikisofia

La revisió el 09:45, 5 feb 2015 per Sofibot (discussió | contribucions) (Es crea la pàgina amb «{{ConcepteWiki}} Una de les operacions més importants de la ment humana, que consisteix bàsicament a atribuir veritat a un enunciat universal fundant-se en la ver...».)
(dif.) ← Versió més antiga | Versió actual (dif.) | Versió més nova → (dif.)

Una de les operacions més importants de la ment humana, que consisteix bàsicament a atribuir veritat a un enunciat universal fundant-se en la veritat observada d'enunciats particulars, a partir dels quals es formula. Es generalitza, així mateix, quan fem valedora també per al futur una hipòtesi, la veritat de la qual creiem confirmada fins al moment present. En tots dos casos es dóna per suposada certa regularitat dels fenòmens naturals o una uniformitat de la naturalesa. La inducció és un tipus de generalització.

En lògica, la quantificació, procediment amb el qual apliquem a una funció proposicional un quantificador per fer d'ella un enunciat.

Es distingeix entre descripció generalitzada, generalització inductiva i generalització estadística. La primera consisteix a formular un enunciat sobre una classe coneixent cadascun dels membres de la mateixa: «tots els meus alumnes són intel·ligents». És la denominada inducció completa. La segona, també anomenada generalització estricta,enuncia alguna cosa sobre tota una classe amb només el coneixement d'alguns dels seus membres (la classe és tan àmplia que és impossible conèixer cadascun dels seus membres, o és simplement universal): «tots els corbs són negres». Aquestes generalitzacions, pel mer fet de ser inductives, només són probables. Aquesta probabilitat pot afirmar-se qualitativament, com en l'exemple dels corbs, o pot afirmar-se d'una forma explícita i quantitativa, adoptant llavors una expressió estadística. Una generalització estadística és una generalització enumerativa o inductiva amb la qual s'atribueix una propietat, no a tota una classe, sinó a un «n%» de la classe: dels casos observats, es passa a afirmar la propietat per al «n%» d'una classe. Si n és igual a 100, l'enunciat estadístic passa a ser una generalització estricta.

Amb enunciats d'aquest tipus es formen hipòtesis estadístiques. Es tracten com enunciats probabilístics i posseeixen les mateixes característiques que les inferències estadístiques.