Accions

Diferència entre revisions de la pàgina «Intuïcionisme»

De Wikisofia

m (Text de reemplaçament - "intuicionista" a "intuïcionista")
m (Text de reemplaçament - "Bozen" a "Bolzano")
Línia 3: Línia 3:
 
En general, tota adopció de la [[intuïció|intuïció]] com a mètode adequat de coneixement.
 
En general, tota adopció de la [[intuïció|intuïció]] com a mètode adequat de coneixement.
  
. Teoria de fonamentació de la matemàtica formulada pel matemàtic holandès Luitzen Egbertus Jan Brouwer (1881-1966), que, en polèmica contra el [[platonisme matemàtic|platonisme matemàtic]], conreat per Bozen, [[Autor:Cantor, Georg|Cantor]] i [[Autor:Russell, Bertrand|Russell]], entre d'altres, sosté, sota influència de la noció [[kantisme|kantiana]] d'aritmètica, que la matemàtica ha de fonamentar-se en la intuïció del [[temps|temps]]. D'aquí deriva l'afirmació fonamental que només han d'acceptar-se aquelles entitats matemàtiques la demostració de les quals pugui construir-se (i rebutjar aquelles la demostració de les quals no sigui possible). L'intuïcionisme matemàtic va influir directament en el desenvolupament de la [[lògica intuïcionista|lògica intuïcionista]] d'Arend Heyting, en 1930.
+
. Teoria de fonamentació de la matemàtica formulada pel matemàtic holandès Luitzen Egbertus Jan Brouwer (1881-1966), que, en polèmica contra el [[platonisme matemàtic|platonisme matemàtic]], conreat per Bolzano, [[Autor:Cantor, Georg|Cantor]] i [[Autor:Russell, Bertrand|Russell]], entre d'altres, sosté, sota influència de la noció [[kantisme|kantiana]] d'aritmètica, que la matemàtica ha de fonamentar-se en la intuïció del [[temps|temps]]. D'aquí deriva l'afirmació fonamental que només han d'acceptar-se aquelles entitats matemàtiques la demostració de les quals pugui construir-se (i rebutjar aquelles la demostració de les quals no sigui possible). L'intuïcionisme matemàtic va influir directament en el desenvolupament de la [[lògica intuïcionista|lògica intuïcionista]] d'Arend Heyting, en 1930.
  
 
Veure [[Recurs:termes relacionats amb matemàtiques|termes relacionats.]]
 
Veure [[Recurs:termes relacionats amb matemàtiques|termes relacionats.]]
{{Etiqueta|Etiqueta=Filosofia general}}{{Etiqueta|Etiqueta=Epistemologia}}{{Esdeveniment|Tipus=Genèric|Lloc=Bozen}}{{InfoWiki}}
+
{{Etiqueta|Etiqueta=Filosofia general}}{{Etiqueta|Etiqueta=Epistemologia}}{{Esdeveniment|Tipus=Genèric|Lloc=Bolzano}}{{InfoWiki}}

Revisió del 23:10, 18 març 2015


En general, tota adopció de la intuïció com a mètode adequat de coneixement.

. Teoria de fonamentació de la matemàtica formulada pel matemàtic holandès Luitzen Egbertus Jan Brouwer (1881-1966), que, en polèmica contra el platonisme matemàtic, conreat per Bolzano, Cantor i Russell, entre d'altres, sosté, sota influència de la noció kantiana d'aritmètica, que la matemàtica ha de fonamentar-se en la intuïció del temps. D'aquí deriva l'afirmació fonamental que només han d'acceptar-se aquelles entitats matemàtiques la demostració de les quals pugui construir-se (i rebutjar aquelles la demostració de les quals no sigui possible). L'intuïcionisme matemàtic va influir directament en el desenvolupament de la lògica intuïcionista d'Arend Heyting, en 1930.

Veure termes relacionats.