Diferència entre revisions de la pàgina «Consistència»
De Wikisofia
m (Text de reemplaçament - "completud" a "completesa") |
|||
(3 revisions intermèdies per 2 usuaris que no es mostren) | |||
Línia 1: | Línia 1: | ||
{{ConcepteWiki}} | {{ConcepteWiki}} | ||
− | Juntament amb la [[completesa|completesa]] una de les propietats de major importància de l'estructura lògica de les [[teoria|teories]]. Una teoria, ''<small>T</small>'', entesa com [[sistema axiomàtic|sistema axiomàtic]], és consistent si i només si no conté alhora una afirmació (''p'') i la seva negació ''(¬p''); en cas contrari és inconsistent. | + | Juntament amb la [[completesa|completesa]] una de les propietats de major importància de l'estructura lògica de les [[teoria|teories]]. Una teoria, ''<small>T</small>'', entesa com a [[sistema axiomàtic|sistema axiomàtic]], és consistent si i només si no conté alhora una afirmació (''p'') i la seva negació ''(¬p''); en cas contrari és inconsistent. |
− | Propietat de dues o més [[enunciat|enunciats]] que poden ser [[veritat|veritables]] al mateix temps. Un conjunt de fórmules és ''sintàcticament'' consistent si i només si d'elles no pot deduir-se una [[contradicció|contradicció,]] que pot expressar-se com un conjunt de fórmules és ''semànticament'' consistent si i només si hi ha almenys una [[interpretació|interpretació]] de les seves [[variable|variables]] que fa veritable a tot el conjunt. Si tals fórmules representen a una teoria, existeix llavors un [[ | + | Propietat de dues o més [[enunciat|enunciats]] que poden ser [[veritat|veritables]] al mateix temps. Un conjunt de fórmules és ''sintàcticament'' consistent si i només si d'elles no pot deduir-se una [[contradicció|contradicció,]] que pot expressar-se com un conjunt de fórmules és ''semànticament'' consistent si i només si hi ha almenys una [[interpretació|interpretació]] de les seves [[variable|variables]] que fa veritable a tot el conjunt. Si tals fórmules representen a una teoria, existeix llavors un [[model|model]] d'aquesta teoria. |
− | + | Vegeu [[inconsistència|inconsistència]], [[coherència]]. | |
{{Etiqueta | {{Etiqueta |
Revisió de 18:47, 27 set 2018
Juntament amb la completesa una de les propietats de major importància de l'estructura lògica de les teories. Una teoria, T, entesa com a sistema axiomàtic, és consistent si i només si no conté alhora una afirmació (p) i la seva negació (¬p); en cas contrari és inconsistent.
Propietat de dues o més enunciats que poden ser veritables al mateix temps. Un conjunt de fórmules és sintàcticament consistent si i només si d'elles no pot deduir-se una contradicció, que pot expressar-se com un conjunt de fórmules és semànticament consistent si i només si hi ha almenys una interpretació de les seves variables que fa veritable a tot el conjunt. Si tals fórmules representen a una teoria, existeix llavors un model d'aquesta teoria.
Vegeu inconsistència, coherència.