Cita de M. Cohen i E. Nagel 1/es
De Wikisofia
< Recurs:Cita de M. Cohen i E. Nagel 1
El principio de inducción matemática puede enunciarse del siguiente modo: si el número [math]\displaystyle{ 1 }[/math] tiene una propiedad, y puede probarse que cuando la tiene [math]\displaystyle{ n }[/math] la tiene [math]\displaystyle{ n+1 }[/math], entonces la tienen todos los números enteros. Basándonos en él, demostremos el siguiente teorema: para todos los valores enteros de
Obviamente, es verdadero para [math]\displaystyle{ n =1 }[/math]. Demostremos ahora que si es válido para el entero [math]\displaystyle{ n }[/math], también lo es para [math]\displaystyle{ (n+1) }[/math].
Si sumamos a ambos miembros[math]\displaystyle{ (2_{n}-1)+2 }[/math], o sea [math]\displaystyle{ (2_{n}+1) }[/math], obtenemos:
Pero b tiene la misma forma que a. Luego, hemos demostrado que si el teorema es verdadero para el entero n, lo es también para (n+1). Ahora bien, para n=1 es verdadero; luego lo es también para n= 1+1, o sea 2; luego, también lo es para n= 2+1, o sea 3, y así sucesivamente para todo entero al que pueda llegarse por sucesivas adiciones de 1.