Diferència entre revisions de la pàgina «Incompletesa, teorema de la»
De Wikisofia
m (bot: -veure text +vegeu el text) |
m (bot: -vegeu el text +veg. text) |
||
Línia 1: | Línia 1: | ||
{{ConcepteWiki}} | {{ConcepteWiki}} | ||
− | Primer dels teoremes de [[Autor:Gödel, Kurt|Kurt Gödel]], que afirma que tot sistema d'axiomes que sigui [[consistent|consistent]] i capaç d'incloure la teoria formal de l'aritmètica és necessàriament ''incomplet''; aquest sistema d'axiomes conté algun [[teorema|teorema]] que, malgrat ser veritable, no pot deduir-se del sistema. El segon teorema de Gödel és complementari del primer i estableix que no és possible provar la [[consistència|consistència]] d'un sistema formal de l'aritmètica amb els solos mitjans que aquest sistema proporciona; no sent la consistència un teorema del sistema, ha de provar-se des de fora del sistema ([[Recurs:Sacristán, Manuel: el teorema de Gödel| | + | Primer dels teoremes de [[Autor:Gödel, Kurt|Kurt Gödel]], que afirma que tot sistema d'axiomes que sigui [[consistent|consistent]] i capaç d'incloure la teoria formal de l'aritmètica és necessàriament ''incomplet''; aquest sistema d'axiomes conté algun [[teorema|teorema]] que, malgrat ser veritable, no pot deduir-se del sistema. El segon teorema de Gödel és complementari del primer i estableix que no és possible provar la [[consistència|consistència]] d'un sistema formal de l'aritmètica amb els solos mitjans que aquest sistema proporciona; no sent la consistència un teorema del sistema, ha de provar-se des de fora del sistema ([[Recurs:Sacristán, Manuel: el teorema de Gödel|veg. text]]). |
{{Etiqueta|Etiqueta=Lògica}}{{InfoWiki}} | {{Etiqueta|Etiqueta=Lògica}}{{InfoWiki}} |
Revisió del 20:49, 9 ago 2017
Primer dels teoremes de Kurt Gödel, que afirma que tot sistema d'axiomes que sigui consistent i capaç d'incloure la teoria formal de l'aritmètica és necessàriament incomplet; aquest sistema d'axiomes conté algun teorema que, malgrat ser veritable, no pot deduir-se del sistema. El segon teorema de Gödel és complementari del primer i estableix que no és possible provar la consistència d'un sistema formal de l'aritmètica amb els solos mitjans que aquest sistema proporciona; no sent la consistència un teorema del sistema, ha de provar-se des de fora del sistema (veg. text).