Reducció a l'absurd
De Wikisofia
La revisió el 19:06, 9 feb 2020 per Jorcor (discussió | contribucions)
(del llatí reductio ad absurdum)
Raonament que es basa a demostrar que un conjunt d'afirmacions format per les premisses i la negació de la seva conclusió porta a una contradicció (veg. exemple). Equival a raonar de la següent manera: si el fet de suposar veritable ¬A (no-A) ens porta a una contradicció, llavors A és necessàriament veritable i ¬A necessàriament falsa. Rep també el nom de prova indirecta. De vegades, la reducció a l'absurd només prova que un conjunt de premisses és inconsistent.
Històricament, l'ús de raonaments indirectes és normal en geometria; les paradoxes de Zenó han estat contemplades també com a raonaments per reducció a l'absurd.
L'esquema lògic d'una reducció a l'absurd és el següent:
[math]\displaystyle{
p\\
.\\
.\\
.\\
q\wedge \neg q\\ }[/math]
____________ [math]\displaystyle{ \neg p }[/math] |
Això vol dir que si suposem p i finalment arribem a una contradicció com [math]\displaystyle{ q\wedge \neg q }[/math], llavors hem de concloure la negació de la suposició p, per tant [math]\displaystyle{ \neg p }[/math] |
Suposem que es vol demostrar que «Raül no és magnànim» a partir de les premisses:
1. No és possible que Raül sigui magnànim i sever al mateix temps.
2. Si Raül és magnànim, perdona.
3. O Raül és sever o no perdona.
Veg. Apagoge.