Accions

Reducció a l'absurd

De Wikisofia

La revisió el 19:06, 9 feb 2020 per Jorcor (discussió | contribucions)
(dif.) ← Versió més antiga | Versió actual (dif.) | Versió més nova → (dif.)

(del llatí reductio ad absurdum)

Raonament que es basa a demostrar que un conjunt d'afirmacions format per les premisses i la negació de la seva conclusió porta a una contradicció (veg. exemple). Equival a raonar de la següent manera: si el fet de suposar veritable ¬A (no-A) ens porta a una contradicció, llavors A és necessàriament veritable i ¬A necessàriament falsa. Rep també el nom de prova indirecta. De vegades, la reducció a l'absurd només prova que un conjunt de premisses és inconsistent.

Veg. exemple →

Històricament, l'ús de raonaments indirectes és normal en geometria; les paradoxes de Zenó han estat contemplades també com a raonaments per reducció a l'absurd.


L'esquema lògic d'una reducció a l'absurd és el següent:

[math]\displaystyle{ p\\ .\\ .\\ .\\ q\wedge \neg q\\ }[/math]

____________

[math]\displaystyle{ \neg p }[/math]

Això vol dir que si suposem p i finalment arribem a una contradicció com [math]\displaystyle{ q\wedge \neg q }[/math], llavors hem de concloure la negació de la suposició p, per tant [math]\displaystyle{ \neg p }[/math]

Suposem que es vol demostrar que «Raül no és magnànim» a partir de les premisses:

1. No és possible que Raül sigui magnànim i sever al mateix temps.

2. Si Raül és magnànim, perdona.

3. O Raül és sever o no perdona.

E3149-1Bcat.png

Veg. Apagoge.

Veg. exemple.