Accions

Màquines que aprenen

De Wikisofia

La revisió el 14:59, 22 ago 2017 per Jaumeortola (discussió | contribucions) (bot: - necessitaven d'un enorme + necessitaven un enorme)

Els primers sistemes d'intel·ligència artificial eren incapaces d'aprendre dels seus errors per modificar el seu funcionament, i necessitaven un enorme treball previ d'estudi del problema per part del programador. Aviat es va fer evident la necessitat de crear programes capaços de respondre a situacions noves i d'utilitzar informació externa sobre l'adequació de les solucions proposades per modificar el seu funcionament en vista dels resultats obtinguts. Així, apareix la noció d'aprenentatge per màquina (machine learning) que consisteix bàsicament a extrapolar un nou pla o acció a partir d'una sèrie d'experiències de resultat conegut. El problema és similar al problema de regressió en estadística, però la dificultat radica en la complexitat i riquesa semàntica dels objectes a tractar. Les tendències simbòlica i subsimbólica en intel·ligència artificial han aportat solucions diverses a aquest problema, que avui dia és fruit d'intensa investigació.