Accions

Diferència entre revisions de la pàgina «Modus tollens»

De Wikisofia

Línia 2: Línia 2:
 
Expressió llatina que significa «manera que nega», i en la seva forma completa de ''modus tollendo tollens'', manera «que nega negant», i que s'aplica a la [[inferència, regles d'|regla d'inferència]] de [[lògica|lògica d'enunciats]], que té el següent esquema:
 
Expressió llatina que significa «manera que nega», i en la seva forma completa de ''modus tollendo tollens'', manera «que nega negant», i que s'aplica a la [[inferència, regles d'|regla d'inferència]] de [[lògica|lògica d'enunciats]], que té el següent esquema:
  
<center>Si P, llavors Q</center>
+
:Si P, llavors Q
  
<center>No Q</center>             
+
:No Q
  
<center> _____________________ </center>
+
_____________________  
  
<center> No P</center>
+
:No P
 
                      
 
                      
  
Línia 17: Línia 17:
 
<math>¬Q</math>
 
<math>¬Q</math>
  
__________________________
+
_________________
  
<math>¬P</math>  
+
<math>¬P</math>
  
  
  
  
<center>'''veg. exemple ↓'''</center>
+
'''veg. exemple ↓'''
  
  
Línia 46: Línia 46:
 
<math>p</math>
 
<math>p</math>
  
[[File:e5021-1.gif]]
 
  
  

Revisió del 20:45, 8 feb 2020

Expressió llatina que significa «manera que nega», i en la seva forma completa de modus tollendo tollens, manera «que nega negant», i que s'aplica a la regla d'inferència de lògica d'enunciats, que té el següent esquema:

Si P, llavors Q
No Q
_____________________ 
No P


El seu esquema lògic és:

[math]\displaystyle{ P \rightarrow{Q} }[/math]

[math]\displaystyle{ ¬Q }[/math]

_________________

[math]\displaystyle{ ¬P }[/math]



veg. exemple ↓


Si Déu no existís tot estaria permès
Però no és veritat que tot estigui permès
___________________________________________
Per tant, Déu existeix (Dostoyevsky)


l'esquema lògic del qual és

[math]\displaystyle{ ¬p \rightarrow{q} }[/math]

[math]\displaystyle{ ¬q }[/math]

__________________________________

[math]\displaystyle{ p }[/math]