Accions

Diferència entre revisions de la pàgina «Equivalència (lògica)»

De Wikisofia

Línia 17: Línia 17:
 
</div></div>
 
</div></div>
  
En lògica de relacions són equivalents les relacions que tenen la propietat de ser reflexives, simètriques i transitives (entenent que tota [[relació|relació]] que és simètrica i transitiva és també reflexiva). Les relacions d'equivalència permeten la [[classificació|classificació]]: [[partició|partició]] en grups mútuament excloents.
+
En lògica de relacions són equivalents aquelles relacions que tenen la propietat de ser reflexives, simètriques i transitives (entenent que tota [[relació|relació]] que és simètrica i transitiva és també reflexiva). Les relacions d'equivalència permeten la [[classificació|classificació]]: [[partició|partició]] en grups mútuament excloents.
  
 
{{Etiqueta
 
{{Etiqueta

Revisió del 22:07, 16 març 2018

Propietat d'aquelles fórmules que són vertaderes o falses per a idèntiques assignacions de valors de veritat


veg. exemple ↓
[math]\displaystyle{ (¬p \wedge ¬q) }[/math] i [math]\displaystyle{ ¬(p \vee q) }[/math]


són fórmules equivalents:


E5010-3.gif

Recurs:Exemple lògic de fórmules equivalents

En lògica de relacions són equivalents aquelles relacions que tenen la propietat de ser reflexives, simètriques i transitives (entenent que tota relació que és simètrica i transitiva és també reflexiva). Les relacions d'equivalència permeten la classificació: partició en grups mútuament excloents.