Accions

Diferència entre revisions de la pàgina «Prova indirecta»

De Wikisofia

m (bot: - <center>'''Veure exemple + <center>'''Vegeu exemple)
m (bot: - per tant : + per tant:)
Línia 27: Línia 27:
 
<math>(P\wedge ¬Q) \longrightarrow{(R\wedge ¬R)}</math>
 
<math>(P\wedge ¬Q) \longrightarrow{(R\wedge ¬R)}</math>
  
i que, per tant : ''Si emprant com a premisses la hipòtesi i la negació de la tesi del teorema, arribéssim a una conclusió absurda o contradictòria, podrem donar per demostrat el teorema.''
+
i que, per tant: ''Si emprant com a premisses la hipòtesi i la negació de la tesi del teorema, arribéssim a una conclusió absurda o contradictòria, podrem donar per demostrat el teorema.''
  
 
Aquest tipus de demostració rep el nom de ''demostració per [[reducció a l'absurd|reducció a l'absurd]].''
 
Aquest tipus de demostració rep el nom de ''demostració per [[reducció a l'absurd|reducció a l'absurd]].''

Revisió del 18:54, 10 ago 2017

 Regla de inferència que es basa a suposar que és veritat la negació de la conclusió, per mostrar que d'això es deriva una contradicció. La manera concreta de realitzar la prova consisteix a afegir a les premisses la negació de la possible conclusió per arribar a la deducció d'una expressió contradictòria; es dedueix que és veritable la conclusió no negada.

Vegeu exemple ↓

Sabem que per demostrar un teorema

[1] [math]\displaystyle{ P\Longrightarrow{Q} }[/math]

n'hi ha prou amb provar que la proposició condicional

[2] [math]\displaystyle{ P\rightarrow{Q} }[/math]

és una tautologia. Però com, d'altra banda, la proposició condicional

[3] [math]\displaystyle{ (P\wedge ¬Q) \rightarrow{(R \wedge ¬R)} }[/math]

(on R és una proposició qualsevol), és equivalent a la [2], com es pot provar fàcilment amb la construcció de la taula de veritat adequada; podrem substituir la demostració del teorema [1] per la corresponent prova que el condicional [3] és una tautologia.


Ara bé, com [math]\displaystyle{ (R\wedge ¬R) }[/math] és un absurd, o sigui fals; perquè [3] sigui una tautologia haurà de ser [math]\displaystyle{ (P\wedge ¬Q) }[/math] fals, i com que [math]\displaystyle{ P }[/math] és veritat, per ser premissa del teorema [1], [math]\displaystyle{ ¬Q }[/math] haurà de ser fals i, per tant, [math]\displaystyle{ Q }[/math] veritat, com es volia demostrar.

De l'anterior podem concloure que la demostració del teorema [1] pot ser substituïda per la del

[math]\displaystyle{ (P\wedge ¬Q) \longrightarrow{(R\wedge ¬R)} }[/math]

i que, per tant: Si emprant com a premisses la hipòtesi i la negació de la tesi del teorema, arribéssim a una conclusió absurda o contradictòria, podrem donar per demostrat el teorema.

Aquest tipus de demostració rep el nom de demostració per reducció a l'absurd.


Exemple de reducció a l'absurd

Demostrar per reducció a l'absurd el teorema «Dues rectes a i b, paral·leles a una tercera c, són paral·leles entre si»

Resolució:

Si representem amb P i Q, respectivament, les proposicions «Dues rectes a i b són paral·leles a una tercera recta c» i «Les rectes a i b són paral·leles entre si», llavors P serà la hipòtesi i Q la tesi del teorema a demostrar

[math]\displaystyle{ P \longrightarrow{Q} }[/math]

Ara bé, sabem que la demostració d'aquest teorema pot ser substituïda per la del seu equivalent

[math]\displaystyle{ (P\wedge ¬Q) \rightarrow{(R\wedge ¬R)} }[/math]

la demostració del qual és com segueix: Si les rectes a i b són paral·leles a una tercera c, i les rectes a i b no fossin paral·leles entre si, això és, es tallessin en un punt, des d'aquest punt podríem traçar dues paral·leles a c, el que és absurd (fals).

_________________________________________________________________

A. Burgos, Iniciación a la lógica matemática, Seleccions científicas, Madrid 1976, p. 52.

Recurs:Exemple_de_prova_indirecta_/_reducció_a_l'absurd