Accions

Diferència entre revisions de la pàgina «Fórmula vàlida»

De Wikisofia

m (bot: - però, en ocasions, + però, a vegades,)
m (bot: -Veure exemple +Veg. exemple)
Línia 3: Línia 3:
  
 
<div class='mw-collapsible mw-collapsed'>
 
<div class='mw-collapsible mw-collapsed'>
<center>'''Veure exemple ↓'''</center>
+
<center>'''Veg. exemple ↓'''</center>
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
  
Línia 20: Línia 20:
  
 
<div class='mw-collapsible mw-collapsed'>
 
<div class='mw-collapsible mw-collapsed'>
<center>'''Veure exemple ↓'''</center>
+
<center>'''Veg. exemple ↓'''</center>
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
  

Revisió del 11:56, 22 ago 2017

O fórmula universalment vàlida. En lògica d'enunciats, aquella que és veritable per qualsevol assignació de valor de veritat als seus lletres d'enunciat; una fórmula universalment vàlida és també una tautologia, doncs el seu valor en una taula de veritat és sempre veritable, però, a vegades, es diu preferentment «vàlida» a una fórmula i «tautologia» a un enunciat.

Veg. exemple ↓
[math]\displaystyle{ [(p \rightarrow{q})\wedge p]\rightarrow{q} }[/math]

és una fórmula universalment vàlida:

E1630-1.gif

mentre que «ser o no ser» és un enunciat tautològic, o una tautologia.

Recurs:Exemple de fórmula universalment vàlida per a tota assignació

En lògica de predicats, és universalment vàlida aquella fórmula que no pot ser falsa; però no tota fórmula vàlida és una tautologia.

Veg. exemple ↓

D'un enunciat com [math]\displaystyle{ \forall{x} Px }[/math] pot deduir-se [math]\displaystyle{ \exists{x} Px }[/math], i aquesta deducció pot fer-se sense premisses. Per tant, és possible escriure [math]\displaystyle{ \vdash \forall{x} Px \rightarrow{\exists{x} Px} }[/math] i, per aquesta raó, suposar que [math]\displaystyle{ \models \forall{x} Px \rightarrow{\exists{x} Px} }[/math].

Però aquesta última fórmula, encara que necessàriament veritable, no és una tautologia. La seva veritat es demostra només com a conclusió d'una demostració o derivació.

Recurs:Exemple de fórmula vàlida no tautològica