Diferència entre revisions de la pàgina «Fórmula vàlida»
De Wikisofia
(Es crea la pàgina amb «{{ConcepteWiki}} O fórmula universalment vàlida. En lògica d'enunciats, aquella que és veritable per qualsevol as...».) |
m (Text de reemplaçament - "lógica" a "lògica") |
||
Línia 27: | Línia 27: | ||
Però aquesta última fórmula, encara que necessàriament veritable, no és una tautologia. La seva veritat es demostra només com a conclusió d'una demostració o derivació. | Però aquesta última fórmula, encara que necessàriament veritable, no és una tautologia. La seva veritat es demostra només com a conclusió d'una demostració o derivació. | ||
− | [[Recurs:Exemple de fórmula vàlida no | + | [[Recurs:Exemple de fórmula vàlida no tautològica]] |
</div></div> | </div></div> |
Revisió del 12:20, 1 març 2015
O fórmula universalment vàlida. En lògica d'enunciats, aquella que és veritable per qualsevol assignació de valor de veritat als seus lletres d'enunciat; una fórmula universalment vàlida és també una tautologia, doncs el seu valor en una taula de veritat és sempre veritable, però, en ocasions, es diu preferentment «vàlida» a una fórmula i «tautologia» a un enunciat.
és una fórmula universalment vàlida:
mentre que «ser o no ser» és un enunciat tautològic, o una tautologia.Recurs:Exemple de fórmula universalment vàlida per a tota assignació
En lògica de predicats, és universalment vàlida aquella fórmula que no pot ser falsa; però no tota fórmula vàlida és una tautologia.
D'un enunciat com [math]\displaystyle{ \forall{x} Px }[/math] pot deduir-se [math]\displaystyle{ \exists{x} Px }[/math], i aquesta deducció pot fer-se sense premisses. Per tant, és possible escriure [math]\displaystyle{ \vdash \forall{x} Px \rightarrow{\exists{x} Px} }[/math] i, pel mateix, suposar que [math]\displaystyle{ \models \forall{x} Px \rightarrow{\exists{x} Px} }[/math].
Però aquesta última fórmula, encara que necessàriament veritable, no és una tautologia. La seva veritat es demostra només com a conclusió d'una demostració o derivació.