Accions

Diferència entre revisions de la pàgina «Reducció a l'absurd»

De Wikisofia

m (bot: - Tot quant Déu + Tot el que Déu)
Línia 45: Línia 45:
  
 
_____________________________________________________________
 
_____________________________________________________________
 +
 
{{Ref|Ref=Pres de W. Neblet, ''Sherlock's Logic'', University Press of America, Lanham-Nova York-Londres 1985, p. 127-128 trad. catal.: ''La lògica de Sherlock Holmes'', La Magrana, Barcelona 1989, p. 125-126).
 
{{Ref|Ref=Pres de W. Neblet, ''Sherlock's Logic'', University Press of America, Lanham-Nova York-Londres 1985, p. 127-128 trad. catal.: ''La lògica de Sherlock Holmes'', La Magrana, Barcelona 1989, p. 125-126).
 
</div></div>
 
</div></div>
Línia 50: Línia 51:
 
Històricament, l'ús de raonaments indirectes és normal en geometria; les [[paradoxes de Zenó|paradoxes de Zenó]] han estat contemplades també com a raonaments per reducció a l'absurd.
 
Històricament, l'ús de raonaments indirectes és normal en geometria; les [[paradoxes de Zenó|paradoxes de Zenó]] han estat contemplades també com a raonaments per reducció a l'absurd.
  
 +
[[Recurs:Exemple prova indirecta: existència de Déu|Veg. exemple]].
  
[[Recurs:Exemple prova indirecta: existència de Déu|Veg. exemple]]
+
Veg. [[Apagogé]].
  
  

Revisió del 13:52, 26 set 2018

(del llatí reductio ad absurdum)

Raonament que es basa a demostrar que un conjunt d'afirmacions format per les premisses i la negació de la seva conclusió porta a una contradicció (veg. exemple). Equival a raonar de la següent manera: si el fet de suposar veritable ¬A (no-A) ens porta a una contradicció, llavors A és necessàriament veritable i ¬A necessàriament falsa. Rep també el nom de prova indirecta. De vegades, la reducció a l'absurd només prova que un conjunt de premisses és inconsistent.

Veg. exemple →

1. Déu és omnipotent.

2. Déu és omniscient.

3. Si Déu és omniscient, Déu pot pensar en tot el que pot ser pensat.

4. Si Déu és omnipotent, Déu pot crear tot el que pot ser pensat.

5. Si Déu és omnipotent, tot el que pot crear el pot també destruir.

6. És possible pensar en una entitat indestructible (aquella precisament que posseeix la propietat de no poder ser destruïda).

_________________________________________________________________

Per tant,


7. Déu pot pensar en tot el que pot ser pensat.

8. En concret, si una entitat indestructible pot ser pensada, Déu pot pensar-la.

9. Déu pot pensar en una entitat indestructible

10. Tot el que Déu pot pensar pot també crear-ho.

11. Si Déu pot pensar en una entitat indestructible, també pot crear una entitat indestructible.

12. Déu pot crear una entitat indestructible.

13. Però tot el que Déu pot crear també pot destruir-ho.

14. En concret, si Déu pot crear una entitat indestructible, llavors Déu pot destruir una entitat indestructible.

15. Déu pot destruir una entitat indestructible

(Però, per definició Déu no pot destruir una entitat indestructible. La conclusió [15] és una contradicció. L'argument és una «reducció a l'absurd» que prova que les premisses 1-6 són inconsistents entre si).

_____________________________________________________________

{{Ref|Ref=Pres de W. Neblet, Sherlock's Logic, University Press of America, Lanham-Nova York-Londres 1985, p. 127-128 trad. catal.: La lògica de Sherlock Holmes, La Magrana, Barcelona 1989, p. 125-126).

Històricament, l'ús de raonaments indirectes és normal en geometria; les paradoxes de Zenó han estat contemplades també com a raonaments per reducció a l'absurd.

Veg. exemple.

Veg. Apagogé.