Accions

Diferència entre revisions de la pàgina «Lògiques polivalents»

De Wikisofia

m (Text de reemplaçament - " text]] )" a " text]])")
m (bot: -veure text +vegeu el text)
Línia 2: Línia 2:
 
Lògiques que no es funden en el principi clàssic de [[bivalència, principi de|bivalència]], sinó que atorguen a les [[funció veritativa|funcions veritatives]] valors intermedis entre la veritat i la falsedat. Són lògiques ''finites ''polivalents aquelles que admeten valors intermedis finits, i lògiques ''infinites'' polivalents aquelles que admeten una sèrie infinita de valors intermedis.
 
Lògiques que no es funden en el principi clàssic de [[bivalència, principi de|bivalència]], sinó que atorguen a les [[funció veritativa|funcions veritatives]] valors intermedis entre la veritat i la falsedat. Són lògiques ''finites ''polivalents aquelles que admeten valors intermedis finits, i lògiques ''infinites'' polivalents aquelles que admeten una sèrie infinita de valors intermedis.
  
La [[lògica|lògica d'enunciats]] ''trivalente'', desenvolupada per vegada primera per [[Autor:Lukasiewicz, Jan|Lukasiewicz]] ([[Recurs:Lukasiewicz, Jan: els futurs contingents|veure text]]) admet tres [[veritat, valors de|valors de veritat]]:
+
La [[lògica|lògica d'enunciats]] ''trivalente'', desenvolupada per vegada primera per [[Autor:Lukasiewicz, Jan|Lukasiewicz]] ([[Recurs:Lukasiewicz, Jan: els futurs contingents|vegeu el text]]) admet tres [[veritat, valors de|valors de veritat]]:
  
  

Revisió del 19:55, 9 ago 2017

Lògiques que no es funden en el principi clàssic de bivalència, sinó que atorguen a les funcions veritatives valors intermedis entre la veritat i la falsedat. Són lògiques finites polivalents aquelles que admeten valors intermedis finits, i lògiques infinites polivalents aquelles que admeten una sèrie infinita de valors intermedis.

La lògica d'enunciats trivalente, desenvolupada per vegada primera per Lukasiewicz (vegeu el text) admet tres valors de veritat:


Per a aquest tipus de lògica, la taula de veritat corresponent a la definició de la conjunció és la següent:

2318.png